基于TVF-EMD-PSO-GRU的月径流模型与应用研究
准确的径流预测在水资源规划和管理中发挥着重要作用.然而,受气候变化和人类活动等因素的影响,径流形成过程十分复杂,具有高度的非线性和非平稳性,更增加了径流预报的难度.为提高月径流预测精度,提出了基于时变滤波器的经验模态分解(TVF-EMD)和结合粒子群优化算法(PSO)的门限循环单元(GRU)的混合模型(TEPG).首先利用TVF-EMD将原始月径流序列分解为若干个固有模态函数(IMF),然后再利用PSO-GRU模型分别对每一个IMF进行预测,最后将每个IMF的预测结果相加得到原始月径流序列最终的预测结果.以黄河干流4个代表性水文站(包括唐乃亥站、头道拐站、花园口站、利津站)为研究对象,应用该模型对这4个测站的月径流进行单步预测研究,并与PSO-GRU(PG)模型、基于互补经验模态分解(CEEMD)的PSO-GRU(CPG)模型和基于经验模态分解(EMD)的PSO-GRU模型(EPG)进行对比分析.选用纳什效率系数NSE、相关系数R、均方根误差RMSE、预报合格率QR及预报精度等级等评价指标对模型预测精度进行评价.结果表明,与PG模型、CPG模型、EPG模型相比,TEPG模型具有更高的预测精度和更好的泛化能力,4个水文站的NSE均达到0.981及以上,R均达到0.992及以上,RMSE最大仅为64.031 m3/s,QR均达到84.7%及以上,预报精度等级均为乙等及以上.因此,TEPG模型在预测非平稳和非线性月径流序列中具有较好的应用前景.
黄河流域、月径流预测、TVF-EMD、粒子群优化算法、门限循环单元
55
P333(水文科学(水界物理学))
国家重点研发计划;科技部重点领域创新团队项目
2022-06-02(万方平台首次上网日期,不代表论文的发表时间)
共9页
802-810