期刊专题

10.11784/tdxbz201704066

基于SSIM的自适应样本块图像修复算法

引用
现有基于样本块的图像修复算法,大多通过人工设定样本块大小来达到最佳修复效果,缺乏自适应性;此外,对图像不同纹理和结构区域采用相同大小的样本块,也不利于获得整体最优修复效果.为解决上述问题,本文提出一种基于改进结构相似性的自适应样本块大小选取算法,在传统的SSIM算法的基础上增加了梯度信息,并通过结合样本块亮度、对比度和结构3个模块来衡量结构差异,以此确定不同结构和纹理区域的最优样本块大小,提高算法适应性,改善修复效果.仿真实验结果表明,当图像存在复杂的结构和纹理信息时,本文算法仍然能够获得理想的修复效果.

图像修复、纹理合成、自适应样本块、SSIM算法、梯度信息

51

TP391(计算技术、计算机技术)

国家自然科学基金资助项目61271326

2018-08-07(万方平台首次上网日期,不代表论文的发表时间)

共5页

763-767

相关文献
评论
暂无封面信息
查看本期封面目录

天津大学学报

0493-2137

12-1127/N

51

2018,51(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn