期刊专题

10.11784/tdxbz201501058

联合新型分块稀疏表示和梯度先验图像盲复原

引用
针对目前基于稀疏表示的图像盲复原算法计算量大且细节恢复能力有限等问题,提出一种新的图像盲复原方法.首先针对现有稀疏表示模型中重叠分块计算复杂度高的问题,提出一种多模式非重叠分块策略,在每种模式下独立求解复原图像,然后对各模式下复原图像求平均以消除“伪像”;另外,用l1/l2范数作为稀疏性度量,将图像梯度稀疏先验融入基于稀疏表示的图像盲复原模型.最后,本文提出了联合新型分块字典稀疏表示和图像梯度稀疏先验的盲复原模型,采取迭代方法交替估计模糊核和待复原图像.实验结果表明,该方法在主观和客观评价下均取得较好的复原结果,并显著降低算法整体复杂度.

盲复原、新型分块字典稀疏表示、梯度稀疏先验

49

TP391(计算技术、计算机技术)

国家自然科学基金资助项目61372145,61472274,61201371

2016-11-04(万方平台首次上网日期,不代表论文的发表时间)

共8页

984-991

相关文献
评论
暂无封面信息
查看本期封面目录

天津大学学报

0493-2137

12-1127/N

49

2016,49(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn