期刊专题

10.3969/j.issn.0493-2137.2006.z1.022

两种优化容错神经网络在输配电网诊断模型中性能的评估

引用
为提高故障诊断系统的容错能力,提出了将故障信息受随机因素畸变的扩展故障样本集引入神经网络(neural network,NN)的容错训练,以提高NN的容错性能,通过基于蚁群优化算法(ant colony optimization algorithm,ACOA)和遗传算法(genetic algorithm,GA)构造2种优化NN,用于高压输电线系统和配电网故障诊断,并进行容错性能的评估.仿真测试表明,基于ACOA法诊断模型的容错性能都要优于广泛应用GA的诊断模型,分别提高5.91%和4.95%.ACOA优化NN不仅具有较好的泛化能力,且具有快的收敛速率.

优化容错神经网络、蚁群优化算法、遗传算法、输电配电系统、故障诊断、容错性能

39

TM732;TP183(输配电工程、电力网及电力系统)

许继奖教金资助项目

2007-01-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

115-120

相关文献
评论
暂无封面信息
查看本期封面目录

天津大学学报

0493-2137

12-1127/N

39

2006,39(z1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn