期刊专题

10.3969/j.issn.0493-2137.2004.10.020

二次规划的整标集法与可分解的二次规划

引用
一般二次规划(QP)常用Fletcher算法或简约梯度法求解,只能得1个K-T点,未必是整体最优解.根据求解线性互补问题全部解的整标集法,文中提出求解二次规划的整标集法,即将(QP)转化为线性互补问题,求出全部互补可行解,得到(QP)的全部K-T点,通过比较得整体最优解.此法不需初始可行点,简便可行,适用于一般二次规划.结合算例将整标集法与Fletcher算法、简约梯度法进行比较.该例用此法求解得7个K-T点,且目标函数值相差甚远.另一例具有无穷多个K-T点.算例表明:对于小规模问题,此法优于Fletcher算法和简约梯度法.文中还提出二次规划可分解的条件,据此可将一类规模较大的问题分解成规模较小的问题,降低了难度.

一般二次规划、整体最优解、线性互补问题、整标集法、可分解的二次规划

37

O221(运筹学)

南开大学校科研和教改项目

2004-12-16(万方平台首次上网日期,不代表论文的发表时间)

共7页

934-940

相关文献
评论
暂无封面信息
查看本期封面目录

天津大学学报

0493-2137

12-1127/N

37

2004,37(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn