期刊专题

10.16668/j.cnki.issn.1003-1421.2021.10.17

考虑线网结构的LightGBM轨道交通短时客流预测模型

引用
考虑空间维度特征对利用监督学习预测轨道交通短时客流量的影响,提出结合复杂网络与机器学习理论挖掘车站层面的客流分布规律.通过对原始数据分析,实现对线网结构特征、时间维度特征及数据集的构建,建立基于LightGBM算法的轨道交通短时客流预测模型,并对模型参数进行标定,采用模型评估和特征重要性分析等方法,对模型结果进行分析,对比LightGBM预测模型与XGBoost、随机森林、CatBoost 和MLP模型的预测效果.结果表明:考虑线网结构下的LightGBM模型在评估指标MAE,MAPE上表现最优,MAPE最小为13.65%,训练速度较其他模型最多提升至25倍,表现出较强的预测性能.

复杂网络;机器学习;LightGBM;轨道交通;客流预测

43

U293.13(铁路运输管理工程)

上海市人民政府专项课题2015-Z-D16-B

2021-11-23(万方平台首次上网日期,不代表论文的发表时间)

共9页

109-117

暂无封面信息
查看本期封面目录

铁道运输与经济

1003-1421

11-1949/F

43

2021,43(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn