期刊专题

10.3969/j.issn.1001-8360.2020.07.013

基于CNN-GRU模型的道岔故障诊断算法研究

引用
道岔作为铁路重要的信号基础设备,在保障铁路安全运行中起到重要作用.基于信号集中监测系统中道岔的故障电流和功率曲线,经过哈尔小波变换后,通过卷积神经网络(CNN)中的卷积层,对故障曲线提取一定维度的道岔故障特征;然后把提取到的故障特征作为门控循环单元(GRU)的输入,从而实现道岔故障诊断;最后将数据集分成训练集和测试集,对模型做训练和验证.实验仿真表明,特征矩阵采用40维输入,迭代75次时,道岔故障诊断准确率达95%,训练时间也优于其他方法.

哈尔小波变换、卷积神经网络、门控循环单元、道岔、故障诊断

42

U284.72(铁路通信、信号)

国家自然科学基金;甘肃省高等学校科研项目;甘肃省科技计划项目

2020-08-10(万方平台首次上网日期,不代表论文的发表时间)

共8页

102-109

相关文献
评论
暂无封面信息
查看本期封面目录

铁道学报

1001-8360

11-2104/U

42

2020,42(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn