期刊专题

基于改进YOLOv4算法的小型多旋翼无人机目标检测

引用
针对基于传统恒虚警概率检测算法的多输入多输出雷达在强地杂波背景下对于小型多旋翼无人机目标检测能力急剧下降的问题,引入了光学图像处理领域的YOLOv4目标检测算法,并在原算法的基础上加入SE模块,形成SE-YOLOv4算法.通过对雷达一维原始回波信号进行处理,获得目标回波信号在距离多普勒域能量分布的二维数据矩阵,形成特征明显的二维距离多普勒谱图,进行标注后构建数据集,模型训练完成后,在测试集上对模型的检测性能进行评估.实验结果表明SE-YOLOv4算法的检测性能优于传统的CFAR算法.

多旋翼无人机、恒虚警概率检测、YOLOv4算法

44

TP391.4(计算技术、计算机技术)

2022-11-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

125-131

暂无封面信息
查看本期封面目录

探测与控制学报

1008-1194

61-1316/TJ

44

2022,44(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn