期刊专题

10.3969/j.issn.1672-0318.2011.01.006

基于PCA和ANFIS的黄土湿陷系数预测

引用
运用人工智能原理,提出一种基于主成分分析法(PCA)与自适应神经模糊推理系统(ANFIS)的黄土湿陷系数预测方法.首先通过主成分分析对黄土的物理指标提取主成分,以消除变量间的相关性和减少模型输入量的目的;再利用神经网络的高自适应性和模糊推理系统的推理能力建立ANFIS模型,提出一种新的黄土湿陷性预测方法.通过实测数据和预测数据的对比分析,平均误差0.29%,最大误差20%,在工程上可以接受的范围,实例说明这种预测方法是可行的.

主成因分析、模糊神经网络、ANFIS、黄土湿陷性、Matlab

10

TU411.2(土力学、地基基础工程)

陕西铁路工程职业技术学院科学研究基金

2011-04-29(万方平台首次上网日期,不代表论文的发表时间)

共4页

28-31

相关文献
评论
暂无封面信息
查看本期封面目录

深圳职业技术学院学报

1672-0318

44-1572/Z

10

2011,10(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn