期刊专题

10.3969/j.issn.1672-6332.2006.04.009

基于属性约减的助推技术及其应用

引用
助推技术是机器学习和数据挖掘领域一种重要的方法,它能够大大提升预测精度,但往往容易造成训练过度,即训练精度过高导致模型外推性变差.本文提出了使用神经元网络技术进行属性约减后进行助推决策树建模的方法,较大程度上避免了助推的过度训练问题.在湖南某市电信数据库中进行了客户流失分析建模实验,结果表明该方法在模型的精度、结果的可理解性以及模型外推精度方面均优于同类算法.

数据挖掘、助推、属性约减、电信、客户流失

04

TN915

2012-02-14(万方平台首次上网日期,不代表论文的发表时间)

38-43

暂无封面信息
查看本期封面目录

深圳信息职业技术学院学报

1672-6332

44-1586/Z

04

2006,04(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn