期刊专题

10.3772/j.issn.1673-2286.2010.09.004

自组织映射在专利文本聚类中的应用研究

引用
自组织映射(SOM)是一种基于人工神经网络的聚类方法,通过将相似的输入数据映射到相同或者相近神经元达到相似相聚的目的,有着不需要先验知识,保持拓扑结构不变、无监督自我学习和易于可视化的优点.由于专利文献有着数量大、文字晦涩冗长、专业性强等特点,分析难度较大,自动聚类分析能挖掘专利文献内在相似性,作为基础性处理用于后期应用,例如专利数据清洗,专利检索,主题分析和专利地图生成等众多领域.基于SOM的专利文本聚类与传统聚类方法相比效率和准确率较高,并且易于可视化展示.本文使用了SOM、k-means和TwoStep算法分别在专利文本聚类中作了对比,得出SOM较优的结论.

自组织映射、专利聚类、文本挖掘、可视化

G35;TP3

国家科技部"十一五"科技支撑计划2006BAH03B03;中国科学技术信息研究所重点工作项目2009KP01-7-1;中国科学技术信息研究所2009年度预研基金项目项目YY-200906等项目的资助

2010-11-05(万方平台首次上网日期,不代表论文的发表时间)

共7页

13-19

相关文献
评论
暂无封面信息
查看本期封面目录

数字图书馆论坛

1673-2286

11-5359/G2

2010,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn