深度学习的电泵井产液量动态预测模型
电泵井产量的动态预测对认识油井供排协调、电泵设备工况、改善工作制度、提高产量和节能降耗具有重要指导意义.根据电泵井静态数据、生产动态数据、举升设备的工况数据,利用皮尔逊相关系数分析方法,分析了影响潜油电泵工作特性因素的关联性,根据主成分分析方法(PCA)进行数据降维确定主控参数,并综合考虑了电泵机组设备工况的变化趋势和前后关联性,应用长短期记忆神经网络(LSTM)建立了电泵井产量时序预测模型.利用某油田现场实际数据对产液量进行预测,并与BP神经网络的预测结果相比较.研究结果表明,基于LSTM模型的电泵井产液量预测值与现场实际值高度一致,预测模型拟合效果更好,预测精度更高,考虑因素更全面、应用更方便、结果更可靠,进而为潜油电泵生产的产液量动态预测提供了一种新的方法,为潜油电泵工作制度调整以及合理选泵设计提供依据.
LSTM;机器学习;特征分析;电泵井;产量预测
43
TE328(油气田开发与开采)
2022-01-06(万方平台首次上网日期,不代表论文的发表时间)
共8页
489-496