期刊专题

10.3969/j.issn.1006-3110.2013.09.009

长沙市流感样病例发病趋势的时间序列分析和预测模型研究

引用
目的 利用自回归滑动平均混合(ARIMA)模型预测长沙市流感样病例(ILI)的发病趋势. 方法 收集长沙市2006年第1周-2013年第10周由流感监测哨点医院每日报告的流感样病例监测资料,进行时间序列分析并建立预测模型,使用前364周资料建立模型,后10周资料评估模型预测效果. 结果 流感样病例监测资料构建ARIMA(1,0,0)模型,回归系数差异有统计学意义(P<0.05).白噪声残差分析显示序列自相关函数的Box-Ljung统计量最小值为20.155(P>0.05),残差为随机性误差.1-364周资料所建立模型ARIMA(1,0,0)预测效果良好,实际值均在预测值的95%可信区间(95% CI)内,符合率达100%.2013第11-16周长沙市ILI%预测值分别为2.28%(95%CI:0.00%~6.21%)、2.31%(95% CI:0.00% ~6.26%)、2.33% (95%CI:0.00% ~6.30%)、2.35% (95% CI:0.00% ~6.33%)、2.36% (95% CI:0.00% ~6.35%)、2.38% (95%CI:0.00%~6.37%). 结论 ARIMA模型能较好模拟长沙市流感样病例的发病趋势.

流感样病例、模型、统计学、时间序列

20

R511.7(传染病)

湖南省卫生厅科研课题B2012-138;长沙市科技局科研课题K1205028-31

2013-10-31(万方平台首次上网日期,不代表论文的发表时间)

共4页

1052-1055

相关文献
评论
暂无封面信息
查看本期封面目录

实用预防医学

1006-3110

43-1223/R

20

2013,20(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn