期刊专题

10.16791/j.cnki.sjg.2022.06.007

基于可视分析和图卷积的MOOC推荐模型

引用
针对MOOC平台下课程推荐过程中存在的数据稀疏和推荐效果不佳的问题,提出融合可视分析的图卷积课程推荐模型.首先,引入可视分析来展示课程间的相互关系,为图卷积模型提供先验知识;其次,提出了一个时空融合的图卷积MOOC推荐模型,用来同时提取数据的时空演变特征;最后,通过在损失函数中引入正则化项来防止训练过程中的过拟合.结果表明:新模型的预测误差和运行效率取得了更加优异的结果.此外,开发实现了融合可视分析与图卷积的MOOC推荐系统,运行结果显示该系统能够有效预测学习者的喜好和需求.

图卷积网络、可视分析、推荐模型、MOOC

39

TP393(计算技术、计算机技术)

北京市教学名师项目XM10720210001

2022-09-02(万方平台首次上网日期,不代表论文的发表时间)

共9页

34-42

相关文献
评论
暂无封面信息
查看本期封面目录

实验技术与管理

1002-4956

11-2034/T

39

2022,39(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn