期刊专题

10.16791/j.cnki.sjg.2022.04.005

基于改进的YOLOv5识别遥感影像中输电塔的方法

引用
针对遥感影像目标检测中部分输电塔因目标较小、特征不显著而难以识别的问题,提出一种优化和改进的YOLOv5目标检测方法.首先,通过增加更大尺度检测层,以提升小目标的检测效果;其次,将大尺寸高分辨率遥感影像通过滑窗分割成小尺寸图像,进行检测及再还原,解决了遥感影像中难以直接有效识别输电塔等问题;最后,调用GDAL模块自动计算被识别输电塔的地理坐标.实验结果表明,改进YOLOv5模型较原始YOLOv5模型具有更好的小目标检测效果,测试集输电塔的AP值由0.87147提升为0.89717,GDAL计算输电塔空间坐标准确.

遥感影像、目标检测、输电塔、YOLOv5、小目标、GDAL

39

TM75;TP751(输配电工程、电力网及电力系统)

国家重点研发计划;国家自然科学基金

2022-04-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

19-24

相关文献
评论
暂无封面信息
查看本期封面目录

实验技术与管理

1002-4956

11-2034/T

39

2022,39(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn