期刊专题

10.16791/j.cnki.sjg.2022.03.003

基于多模态深度学习的脑肿瘤分割实验研究

引用
针对现有3D U-Net网络在脑肿瘤分割中存在的训练过程中损失函数值难以降低,对增强瘤、肿瘤核分割精度较差等问题,该文提出了某模型网络的优化方案.首先使用残差网络结构降低训练难度;进一步引入注意力机制对多模态MRI的融合权值进行自适应学习,充分利用不同模态特征信息;最后在网络解码器部分采用双路卷积结构,提高了网络的特征提取能力.实验结果表明,改进后的网络训练损失函数更容易收敛到较小值,且对3种肿瘤的平均分割Dice系数提高了0.0189,平均Hausdorff距离缩短了1.1971,在整体分割性能上优于改进前的网络.

深度学习、脑肿瘤分割、多模态、3D U-Net

39

TP391.4(计算技术、计算机技术)

中央高校教育教学改革专项项目;北京高等教育本科教学改革创新项目;国家自然科学基金;北京市自然科学基金重点专题项目

2022-04-25(万方平台首次上网日期,不代表论文的发表时间)

共5页

11-14,36

相关文献
评论
暂无封面信息
查看本期封面目录

实验技术与管理

1002-4956

11-2034/T

39

2022,39(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn