期刊专题

10.16791/j.cnki.sjg.2020.02.016

基于深度学习的疟疾检测

引用
针对疟疾检测方法中的模型存在训练时间过长,权重参数冗余等问题,用疟疾数据集从头开始训练,更改输入图像的大小,直接对ResNet-50网络的深度和宽度进行缩减,研究采用深度学习技术快速、准确地检测疟疾.该方法缩短了模型训练时间,提高了疟疾分类精确度,缩小了模型权重参数大小.

疟疾检测、深度学习、从头训练

37

R531.3(寄生虫病)

国家自然科学基金面上项目61876042

2020-06-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

67-71

相关文献
评论
暂无封面信息
查看本期封面目录

实验技术与管理

1002-4956

11-2034/T

37

2020,37(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn