期刊专题

10.3969/j.issn.1002-4956.2013.10.018

能谱熵向量法及改进 LM 神经网络在液压油缸内泄漏故障诊断中的应用

引用
针对基于时域组合特征的故障诊断方法的不足,提出一种基于小波包能谱熵分析的液压油缸内泄漏故障诊断方法。分析无杆腔压力信号的时域特征,采用小波包变换提取压力信号的能谱熵并输入到改进LM神经网络进行内泄漏的故障诊断。实验结果表明,无泄漏压力信号的能谱熵向量各元素分布较均匀;而泄漏信号的能谱熵向量各元素差异较大;改进 LM 神经网络在精度、准确率等方面高于传统BP、LM 神经网络。与时域组合特征法进行比较,结果验证算法的高效可检测性。以不同分类器、不同小波基对算法诊断性能的影响进行分析,结果表明,该方法具有很强的稳定性和优越性。

液压油缸内泄漏、故障诊断、能谱熵、levenberg-marquart算法、BP网络

TH137.51;TP277

国家自然科学基金资助项目60974012,61171160

2013-10-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

59-64

相关文献
评论
暂无封面信息
查看本期封面目录

实验技术与管理

1002-4956

11-2034/T

2013,(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn