10.3969/j.issn.1007-7324.2012.02.012
结合KICA的软测量建模方法及其在间歇过程的应用
针对间歇过程的建模问题,提出一种结合核独立成分分析(KIcA)和稀疏核学习的软测量建模方法。首先将KICA应用于建模样本集,在高维空间提取输入变量的信息,以降低过程变量的相关性,再用稀疏核学习建立软测量模型。以估计链激酶流加发酵过程的活性菌体质量分数和链激酶质量分数为例,将基于KICA信息提取的稀疏核学习方法用于间歇过程的软测量建模。仿真结果表明,KICA信息提取能力优于传统ICA或核主元分析等其他方法,所提出的建模方法预报精度更高。
间歇过程、软测量建模、核独立成分分析、支持向量回归、稀疏核学习
48
TP277;TQ02(自动化技术及设备)
国家自然科学基金资助项目61004136;浙江省自然科学基金资助项目Y4100457
2012-07-09(万方平台首次上网日期,不代表论文的发表时间)
共5页
36-40