期刊专题

10.3969/j.issn.2095-2198.2023.02.009

基于窄卷积层神经网络轴承剩余使用寿命预测

引用
传统的轴承剩余使用寿命预测方法大多是对原始振动信号进行时域特征、频域特征以及时频域特征的提取,创建轴承的健康指标来建立模型,实现剩余寿命预测.为了简化轴承剩余寿命预测方法及提高预测的准确度,提出一种只保留传统卷积神经网络里的卷积层,且把卷积层改为窄卷积的降维方法.首先,将窄卷积层神经网络对原始输入信号进行特征学习,构建健康指标;其次,采用Adam优化损失函数及加权平均方法对网络输出结果进行降噪处理,得到健康指标,进而根据健康指标反向计算且平滑后得到剩余使用寿命;最后,通过滚动轴承全寿命试验数据仿真证明该方法能够准确预测轴承剩余使用寿命,且与传统卷积神经网络的预测结果进行对比,该方法的寿命百分比误差均值为7.33%,传统卷积神经网络的寿命百分比误差均值为61.65%,该方法的平均误差降低了88.11%,验证了其有效性.

窄卷积层、神经网络、轴承、加权平均法、剩余寿命预测

37

TH165

辽宁省自然科学基金;辽宁省高端人才建设项目

2023-10-16(万方平台首次上网日期,不代表论文的发表时间)

共8页

151-158

暂无封面信息
查看本期封面目录

沈阳化工大学学报

2095-2198

21-1577/TQ

37

2023,37(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn