期刊专题

10.7688/j.issn.1000-1646.2024.04.11

基于NanoDet-SimAM小尺寸松材线虫病受害木检测

引用
针对小尺寸松材线虫病受害木检测精度及检测效率低的问题,提出了一种融合深度网络和注意力机制的小尺寸松材线虫智能检测模型.采用无人机(UAV)搭载小型相机在 220 m高度拍摄小尺寸松材线虫受害木图像,应用图像旋转、缩放、添加高斯噪声和模拟光照强度等数据处理方式扩充数据集,设计轻量级深度网络NanoDet和SimAM注意力模块融合模型NanoDet-SimAM对小尺寸松材线虫受害木进行精准检测.结果表明,该模型相较于Faster R-CNN、Yolov4、Yolov5s及NanoDet等检测网络模型,具有更高的检测精度、速度和稳定性.

松材线虫病、目标检测、轻量级网络NanoDet、注意力机制、无参注意力、迁移学习、数据增强、小尺寸

46

TP391(计算技术、计算机技术)

辽宁省民生科技计划项目;辽宁省兴辽人才项目;辽宁省教育厅基本科研项目

2024-10-07(万方平台首次上网日期,不代表论文的发表时间)

共6页

428-433

相关文献
评论
暂无封面信息
查看本期封面目录

沈阳工业大学学报

1000-1646

21-1189/T

46

2024,46(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn