期刊专题

10.3969/j.issn.1000-1646.2007.03.019

基于RBF神经网络的ECT图像重建

引用
线性反投影算法是最常用的ECT图像重建算法,该算法将极板电容测量值与成像区域介电常数间的非线性关系作线性化近似.由于神经网络的非线性映射能力可用来避免这种线性化近似,为此探讨了基于RBF神经网络的16极板ECT系统的图像重建方法.采用最大矩阵法确定RBF神经网络隐层神经元数目,用最小邻聚类方法确定径向基函数的宽度和中心,建立了极板电容测量值与成像区域介电常数间的RBF神经网络映射.仿真实验结果表明,基于RBF神经网络的ECT图像重建方法重建速度与线性反投影法相当,重建质量优于线性反投影法.

电容层析成像、图像重建、RBF神经网络、最大矩阵法、最小邻聚类法

29

TN941.1

辽宁省博士科研项目2001102031

2007-07-30(万方平台首次上网日期,不代表论文的发表时间)

共4页

322-325

暂无封面信息
查看本期封面目录

沈阳工业大学学报

1000-1646

21-1189/T

29

2007,29(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn