期刊专题

10.16862/j.cnki.issn1674-3873.2020.03.007

基于Logistic回归和神经网络比较的咽喉反流疾病的精准预测

引用
数据来自吉林大学第二医院193位病人的反流症状指数评分量表(RSI)数据,应用Logistic回归模型与神经网络模型对咽喉反流疾病进行预测.首先对数据进行预处理和相关性检验,再将数据按7:3拆分成训练集和验证集,最后通过Logistic回归模型和神经网络模型两种方法对咽喉反流疾病进行预测.结果表明,Logistic回归模型的预测准确率为99.39%,神经网络早停止法训练出的模型预测准确率最高为98.61%.因此,Logistic回归模型对咽喉反流性疾病的预测更加准确,为咽喉反流疾病的高效识别奠定了基础.

咽喉反流疾病、预测、Logistic回归模型、神经网络、SAS软件

41

O212(概率论与数理统计)

国家自然科学基金项目11671054

2020-09-11(万方平台首次上网日期,不代表论文的发表时间)

共8页

36-43

暂无封面信息
查看本期封面目录

吉林师范大学学报(自然科学版)

1674-3873

22-1393/N

41

2020,41(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn