期刊专题

10.19364/j.1674-9405.2018.06.006

基于主题模型的水利信息分类方案设计

引用
水利信息分类是水利科学数据共享标准化最为重要的一项工作,因此对水利领域大量数据信息的分类十分有必要.针对水利文本数据非结构化的特点,设计一个基于主题模型的水利文本信息分类方案,通过结合LDA主题模型和GloVe词向量模型的优点,提出一种新的主题模型.利用AdaBoost算法改进KNN分类器,在迭代中对分类器的错误进行适应性调整,最终得到分类器的集合.实验结果表明,使用AdaBoost提升KNN对于水利文本分类效果良好,分类效果远好于常见的朴素贝叶斯和决策树,和原来的KNN分类器相比,微观准确率提高1.1个百分点,宏观准确率提高了4.1个百分点,说明在水利文本分类中使用AdaBoost算法可提升KNN分类器的有效性.

主题模型、水利文本信息、文本分类、方案、LDA、GloVe

TV211

2019-01-23(万方平台首次上网日期,不代表论文的发表时间)

共8页

27-34

相关文献
评论
暂无封面信息
查看本期封面目录

水利信息化

1674-9405

32-1819/TV

2018,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn