期刊专题

10.3880/j.issn.1006-7647.2024.01.013

基于YOLO模型的堤坝管涌监测智能识别方法

引用
针对堤坝管涌现象的监测识别问题,提出一种基于YOLO模型的堤坝管涌识别方法.该方法通过引入改进的残差块及替换模型的激活函数来提升YOLO v3模型的网络性能,构建了基于堤坝管涌感兴趣区域提取的Piping YOLO模型来提取管涌感兴趣区域,并采用二维主成分分析方法提取管涌现象的特征,将其作为多权值神经网络的输入,经训练后实现管涌状态的分类识别.基于自主搭建的管涌渗漏试验平台建立了数据集并进行了试验验证,结果表明,提出的方法能有效识别堤坝管涌现象,在堤坝管涌无人巡检领域具有一定的应用前景.

堤坝管涌、感兴趣区域、YOLO v3模型、多权值神经网络

44

TP391(计算技术、计算机技术)

南通市市级社会民生科技重点项目MS22021032

2024-01-23(万方平台首次上网日期,不代表论文的发表时间)

共6页

89-94

相关文献
评论
暂无封面信息
查看本期封面目录

水利水电科技进展

1006-7647

32-1439/TV

44

2024,44(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn