期刊专题

10.3969/j.issn.0559-9342.2023.05.017

小型水电站发电量预测模型研究

引用
针对当前小水电发电量预测中资料短缺、发电不稳定等问题,采用LM-BP神经网络法和多元线性回归法进行了对比分析.神经网络法通过相关分析和自相关分析筛选出与日发电量有显著关系的因子作为模型输入,以小水电日发电量作为输出,构建LM-BP神经网络模型,通过试错法确定神经网络最优隐含层节点数并进行模型训练,该方法能够在不同预见期下取得较高的预测精度.多元线性回归法通过检验日发电量与待选因子的相关系数,筛选与日发电量有显著关系的因子作为预测模型方程自变量,利用最小二乘法计算模型参数.多元线性回归方法在预见期为1 d时预测精度与LM-BP神经网络模型接近,但在更长预见期的滚动预报中精度低于神经网络法.

发电能力预测、短期预报、长期预报、LM-BP神经网络、多元回归分析、预测精度、小水电

49

TV213.4

2023-05-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

91-97

暂无封面信息
查看本期封面目录

水力发电

0559-9342

11-1845/TV

49

2023,49(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn