10.3969/j.issn.0559-9342.2021.08.003
黄龙滩水库中长期径流预报方法研究
基于黄龙滩水库和潘口水库历史旬月径流数据,选取其2012年~2018年的径流、降雨数据进行灰色关联分析,筛选出与黄龙滩水库入库径流关联度最高的7个预报因子,建立深度神经网络(DNN)、Elman神经网络和支持向量机(SVM)径流预测模型,对模型参数进行训练,统计模型训练期和检验期的确定性系数、洪峰合格率、均方差和平均相对误差.预报效果表明,3种模型在黄龙滩水库中长期径流预测上效果较好,精度较高,误差较小,预报结果对于黄龙滩水库水文预报上具有重要意义.相比于深度神经网络和Elman神经网络,支持向量机在洪峰预报上误差更小,且具有更高的预测精度.
径流预报;灰色关联分析;深度神经网络(DNN);Elman神经网络;支持向量机(SVM);黄龙滩水库
47
P338.2(水文科学(水界物理学))
国家自然科学基金重点支持项目;国家自然科学基金重点项目;中央高校基本科研业务费专项资金资助项目
2021-08-17(万方平台首次上网日期,不代表论文的发表时间)
共6页
10-14,93