10.3969/j.issn.0559-9342.2002.12.011
基于神经网络的轴心轨迹的自动识别
轴心轨迹的图形形状识别是旋转机械故障诊断中最为重要的内容之一.利用图形的不变性特征矩的识别技术对轴心轨迹的图形数据进行特征提取,并将特征提取结果作为神经网络的输入让其学习,学习完成后,就可利用神经网络对轴心轨迹的图形形状进行分类识别.神经网络采用改进的BP网络,提出的一种确定神经网络最优隐含层节点数的新方法,其正确性得到了大量事实的验证.对仿真轴心轨迹图形形状的识别结果表明,该方法是有效的、可行的.
轴心轨迹、神经网络、不变性特征矩
TP183;TP391.41;TP206.3(自动化基础理论)
2004-01-08(万方平台首次上网日期,不代表论文的发表时间)
共4页
34-37