期刊专题

10.3969/j.issn.1002-5057.2019.04.003

基于加权距离进行密度计算的聚类方法研究

引用
本文主要研究了初始聚类中心选取对于K-means算法性能的影响,并通过更好的初始化技术来增强算法性能.研究发现,在进行K-means聚类时,通过使用加权距离密度计算方法,对数据集的密度计算,使得在传统K-means聚类算法过程局部最优、簇内方差较大所带来的聚类结果不佳的缺陷得到了显著改善.实验结果表明,在使用本改进方法进行聚类时,聚类结果的簇内方差较传统方法降低了15%左右,对聚类中心的聚集性更加紧密,使算法性能得到了较好的提升.

K-means算法、密度计算、加权距离、簇质心

2019-10-12(万方平台首次上网日期,不代表论文的发表时间)

共5页

11-15

相关文献
评论
暂无封面信息
查看本期封面目录

数据通信

1002-5057

11-2841/TP

2019,(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn