期刊专题

应用改进混合蛙跳算法的实用语音情感识别

引用
针对支持向量机(Support Vector Machine,SVM)的参数优化问题,提出了一种改进的混合蛙跳算法(Improved Shuffled Frog Leaping Algorithm,Im-SFLA),提高了其在实用语音情感识别中的学习能力.首先,我们在SFLA中引入了模拟退火(Simulated Annealing,SA)、免疫接种(Immune Vaccination,Ⅳ)、高斯变异和混沌扰动算子,平衡了搜索的高效性和种群的多样性;第二,利用Im-SFLA优化SVM的参数,提出了一种Im-SFLA-SVM方法;第三,分析了烦躁等实用语音情感的声学特征,重点分析了基音、短时能量、共振峰和混沌特征随情感类别的变化特性,构建出144维的情感特征向量并采用LDA降维到4维;最后,在实用语音情感数据库上测试了算法性能,将提出的算法与混合蛙跳算法(Shuffled Frog Leaping Algorithm,SFLA)优化SVM参数的方法(SFLA-SVM方法)、粒子群优化(Particle Swarm Optimization,PSO)算法优化SVM参数的方法(PSO-SVM方法)、基本SVM方法、高斯混合模型(Gaussian Mixture Model,GMM)方法和反向传播(Back Propagation,BP)神经网络法等进行对比.实验结果表明,采用Im-SFLA-SVM方法的平均识别率达到77.8%,分别高于SFLA-SVM方法、PSO-SVM方法、SVM方法、GMM方法和BP神经网络法各1.7%,2.7%,3.4%,4.7%,7.8%,并且对于烦躁这种实用情感的识别率提高效果最为明显,从而证实了Im-SFLA是一种有效的SVM参数选择方法,并且Im-SFLA-SVM方法能显著提升实用语音情感的识别率.

39

国家自然科学基金61231002,61273266,51075068;教育部博士点专项基金20110092130004

2014-03-25(万方平台首次上网日期,不代表论文的发表时间)

共10页

271-280

相关文献
评论
暂无封面信息
查看本期封面目录

声学学报

0371-0025

11-2065/O4

39

2014,39(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn