期刊专题

10.3969/j.issn.1000-2324.2022.06.007

Res-Efficient:应用于作物病害自动识别的轻量级模型

引用
卷积神经网络模型可通过作物病害图像准确率较高地识别作物病害类型,达到防治作物病害的目的,但传统卷积神经网络模型存在模型尺寸大、迁移效果差等问题.针对这些问题,引入学习率动态衰减训练策略,使用EfficientNetV2的Fused-MBConv和MBConv模块替换ResNet18的部分残差模块,提出Res-Efficient模型.实验证明,使用学习率动态衰减策略能提高Res-Efficient模型识别作物病害的准确率,Res-Efficient模型在Plant Village和2018 AI Challenger测试集上分别达到99.70%和87.20%的准确率,模型尺寸减少到14.0 MB.Res-Efficient模型能为移动端和嵌入式设备部署作物病害自动识别应用提供参考.

作物病害、自动识别、模型

53

S41-30(植物检疫)

2023-01-16(万方平台首次上网日期,不代表论文的发表时间)

共5页

858-862

暂无封面信息
查看本期封面目录

山东农业大学学报(自然科学版)

1000-2324

37-1132/S

53

2022,53(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn