期刊专题

10.3969/j.issn.1673-3142.2023.05.018

基于SSA-ELM的锂离子电池寿命预测

引用
锂离子电池的性能在循环充放电、环境温度变化、自身材料老化等情况下会不断退化,严重影响电池正常可靠运行.为了提高锂离子电池寿命预测的精准度,提出了一种基于麻雀搜索算法优化极限学习机的锂离子电池寿命预测模型.选用麻雀搜索算法SSA优化ELM的权值和阈值,既减小了由于ELM随机产生权值和阈值导致预测结果不准确和回归模型不稳定等缺点,又改善了全局搜索能力.实验采用NASA锂离子电池数据集,用均方根误差RMSE和相关指数R2作为评价标准,对所提模型(SSA-ELM预测模型)、BP神经网络模型和ELM模型的预测结果进行对比分析.实验结果表明,相比于传统神经网络模型,SSA-ELM算法泛化性能更好,预测精度更加准确可靠.

麻雀搜索算法、极限学习机、锂离子电池、寿命预测

61

TM912

2023-05-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

87-91

暂无封面信息
查看本期封面目录

农业装备与车辆工程

1673-3142

37-1433/TH

61

2023,61(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn