期刊专题

10.3969/j.issn.1673-3142.2022.11.014

基于改进ResNet网络的有遮挡车牌识别

引用
为了提高有遮挡车牌的识别准确率,提出一种改进深度残差网络(Deep residual network,ResNet)损失函数的车牌识别方法.首先运用图像平滑处理技术对图像特征进行增强,其次利用边缘检测算法实现对车牌的定位,然后基于先验知识按照标准车牌中各个字符的比例对车牌进行分割.在此基础上,运用改进后的ResNet网络对有遮挡车牌样本库进行训练以及识别,并采用同样样本大小的无遮挡车牌样本库进行对比实验.实验结果表明,改进后的ResNet网络采用有遮挡车牌样本库训练的模型具有较好的识别准确率,且更具有鲁棒性.

车牌识别、车牌定位、字符分割、深度残差网络、Softmax损失函数

60

TP391.4(计算技术、计算机技术)

2022-12-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

58-63

暂无封面信息
查看本期封面目录

农业装备与车辆工程

1673-3142

37-1433/TH

60

2022,60(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn