期刊专题

10.3969/j.issn.1673-3142.2020.01.025

基于BP神经网络的锂电池组SOC估算

引用
电池荷电状态(SOC)的精确估计是电动车辆的核心技术之一,对影响电池荷电状态的因素进行分析归纳后,采用经典反向传播神经网络(BP神经网络)算法的动力电池SOC估计方法.利用高级车辆仿真软件ADVISOR对电动汽车典型行驶工况进行模拟,得到动力电池组电压、电流、平均温度和荷电状态数据,样本数据经归一化处理后导入神经网络模型中训练和测试,结果表明,该算法能有效提高SOC估算精度,具有较好的收敛性和鲁棒性,SOC估计误差范围能减小到4%以内,满足实际应用的需求.

动力电池组、SOC、估算算法、预测精度

58

TM912;U469.72

2020-03-31(万方平台首次上网日期,不代表论文的发表时间)

共4页

105-107,112

暂无封面信息
查看本期封面目录

农业装备与车辆工程

1673-3142

37-1433/TH

58

2020,58(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn