期刊专题

10.11863/j.suse.2020.04.11

D-Z矩阵和D-ZB-矩阵线性互补问题解的误差界估计式的改进

引用
D-Z矩阵和D-ZB-矩阵是数值计算中占有重要地位的且应用背景较广的H-矩阵的重要新子类,被广泛的应用在控制论及神经网络系统的稳定性分析、计算机的信号处理、磁共振成像问题、模拟以及多项式优化、求震动的频率和数值分析中迭代格式的收敛性分析等问题中.针对这两类矩阵的线性互补问题解的误差界估计问题,首先,根据其定义、两个重要不等式的性质和主对角元素为正的D-Z矩阵与D-ZB-矩阵的性质引理,构造了新的D-Z矩阵;其次,应用该矩阵逆的无穷范数上界的估计范围,结合对一系列不等式的合理放缩技巧,给出了这两类矩阵线性互补问题误差界的新估计式,且获得了D-ZB-矩阵最小奇异值的新下界;最后,用算例表明了新估计式提高了估计的精度.

D-Z矩阵;D-ZB-矩阵;线性互补问题;误差界

33

O151.21(代数、数论、组合理论)

云南省教育厅项目;云南省教育厅项目;文山学院科研基金项目

2022-01-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

77-82

相关文献
评论
暂无封面信息
查看本期封面目录

四川理工学院学报(自然科学版)

1673-1549

51-1687/N

33

2020,33(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn