期刊专题

10.11863/j.suse.2014.01.08

Adaboost算法分类器设计及其应用

引用
Adaboost算法可以将分类效果一般的弱分类器提升为分类效果理想的强分类器,而且不需要预先知道弱分类器的错误率上限,这样就可以应用很多分类效果不稳定的算法来作为Adaboost算法的弱分类器.由于BP神经网络算法自身存在的局限性和对训练样本进行选择的主观性,其分类精度以及扩展性有待提高.将Adaboost算法与BP神经网络相结合,使用神经网络分类模型作为Adaboost算法的弱分类器.算法在matlab中实现,对2个UCI的分类实验数据集进行实验,结果表明Adaboost能有效改善BP神经网络的不足,提高分类正确率和泛化率.

弱分类器、强分类器、BP神经网络、Adaboost算法

27

TP301.6(计算技术、计算机技术)

2014-03-21(万方平台首次上网日期,不代表论文的发表时间)

共4页

28-31

暂无封面信息
查看本期封面目录

四川理工学院学报(自然科学版)

1673-1549

51-1687/N

27

2014,27(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn