Adaboost算法分类器设计及其应用
Adaboost算法可以将分类效果一般的弱分类器提升为分类效果理想的强分类器,而且不需要预先知道弱分类器的错误率上限,这样就可以应用很多分类效果不稳定的算法来作为Adaboost算法的弱分类器.由于BP神经网络算法自身存在的局限性和对训练样本进行选择的主观性,其分类精度以及扩展性有待提高.将Adaboost算法与BP神经网络相结合,使用神经网络分类模型作为Adaboost算法的弱分类器.算法在matlab中实现,对2个UCI的分类实验数据集进行实验,结果表明Adaboost能有效改善BP神经网络的不足,提高分类正确率和泛化率.
弱分类器、强分类器、BP神经网络、Adaboost算法
27
TP301.6(计算技术、计算机技术)
2014-03-21(万方平台首次上网日期,不代表论文的发表时间)
共4页
28-31