10.12198/j.issn.1673-159X.4876
基于经验模态分解的城市快速路车辆速度估计方法
城市快速路交通是典型的非线性、时变系统.针对城市快速路交通流参数估计问题,基于实测道路交通流数据提出一种新的车辆速度估计方法.首先对实测交通流数据进行预处理;然后对其进行经验模态分解与重构,建立训练数据集,基于神经网络算法,构建车辆速度与密度之间的非解析模型,实现速度的估计与预测;最后采用北京市三环路实测交通流数据对算法进行测试,分析数据预处理和经验模态分解对车辆速度估计结果的影响.结果显示本文所提方法的交通流速度参数估计均方根误差为3.41,皮尔逊相关系数为 0.87,比BP神经网络方法具有更高的精度.
城市交通、预处理、车辆速度估计、经验模态分解、神经网络
42
U491;TP183(交通工程与公路运输技术管理)
国家自然科学基金71871130
2023-07-18(万方平台首次上网日期,不代表论文的发表时间)
共9页
16-24