期刊专题

10.12198/j.issn.1673-159X.3314

基于迁移学习的天气图像识别

引用
为提高天气图像识别的准确率,达到良好的天气图像分类效果,提出一种基于迁移学习的天气图像识别算法.该算法使用Xception图像分类算法实现网络架构,再基于迁移学习理论将模型和参数应用到天气图像识别中,并在同一数据集上与其他模型进行性能对比.实验结果表明,基于迁移学习的改进Xception模型有效解决了训练样本不足、准确率低的问题,在提高天气图像识别方面取得了较好的效果,实现了对阴天、雾天、雨天、沙尘天、雪天、晴天6类天气的识别,总识别准确率达到94.39%.

图像识别、天气识别、图像分类、Xception、迁移学习

40

TP391.41;TP183(计算技术、计算机技术)

2021-01-12(万方平台首次上网日期,不代表论文的发表时间)

共5页

22-26

暂无封面信息
查看本期封面目录

西华大学学报(自然科学版)

1673-159X

51-1686/N

40

2021,40(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn