期刊专题

10.19907/j.0490-6756.2023.021004

一种基于Swin Transformer神经网络的低截获概率雷达信号调制类型的识别方法

引用
本文针对低截获概率(Low Probability of Intercept,LPI)雷达信号调制类型的识别问题提出了一种基于Swin Transformer神经网络的识别方法.该方法首先用平滑伪 Wigner-Ville 分布对信号进行时频变换,将一维时域信号转换为二维时频图像,然后使用Swin Trans-former神经网络对时频图像进行特征提取和调制类型识别.仿真结果显示该方法具有较强的抗噪声能力,在低信噪比条件下识别准确率高,且具有较强的小样本适应能力.

低截获概率雷达、Swin Transformer神经网络、平滑伪 Wigner-Ville分布、调制类型识别

60

O29(应用数学)

国家重点研发计划2020YFA0714000

2023-04-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

36-42

相关文献
评论
暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

60

2023,60(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn