期刊专题

10.19907/j.0490-6756.2022.062003

融合多源图信息的图神经网络会话推荐算法

引用
现有的基于图神经网络的会话推荐算法通过将会话序列构筑为图形结构捕捉项目转换关系,能够有效提高推荐性能.然而多数图神经网络及其改进模型在建模会话时仅考虑会话序列中项目的单次转换关系,忽略了会话中包含的大量有效信息,同时缺乏对项目间隐藏关联性的分析.因此提出融合多源图信息的图神经网络会话推荐算法.将用户重复行为信息,项目内容关联信息纳入到会话图建模过程当中,有效提取项目更深层次的复杂转换关系,并通过线性转换进行聚合.此外采用外部注意力机制辅助获取会话序列项目隐藏关联信息,使得生成的会话向量在推荐过程中更加精确.在真实数据集Yoochoose和Diginetica上进行实验,实验结果表明该模型优于基准模型,特别地,相较于SR-GNN模型在MRR@20指标上提高了12.50%,能更好地预测用户的下一次点击项目.

序列信息、图信息、图神经网络、注意力机制、会话推荐

59

TP391(计算技术、计算机技术)

上海市科技创新计划项目20dz1203800

2023-01-05(万方平台首次上网日期,不代表论文的发表时间)

共11页

51-61

暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

59

2022,59(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn