期刊专题

10.19907/j.0490-6756.2021.033004

基于自适应MCMC采样的新型UPFNN铝电解能耗模型

引用
针对铝电解过程中噪声密集、分布类型未知且参数特征高维而导致建模精度不佳的问题,提出一种基于自适应MCMC采样的新型无迹粒子滤波神经网络(AMCMC-UPFNN)建模方法.该方法首先利用无迹变换(UT)中κ参数的平方项代替UPFNN算法中对应的常规项,避免因维数过高而导致UT矩阵出现非正定情况,保证UPFNN中Sigma点采样的合理性;然后,在传统MCMC方法基础上引入自适应采样策略来保持粒子的多样性,使所建立概率密度分布更接近真实分布;最后,与相关建模方法开展铝电解工业应用验证实验.结果表明,AMCMC-UPFNN模型预测精度的相对误差百分比不超过1%,取得了比PFNN、UPFNN和MCMC-UPFNN更优的性能指标.

马尔科夫链蒙特卡洛、无迹粒子滤波、铝电解、神经网络、能耗建模

58

N945.12(系统科学)

国家自然科学基金;重庆市基础研究与前沿探索项目

2021-06-09(万方平台首次上网日期,不代表论文的发表时间)

共7页

98-104

暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

58

2021,58(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn