期刊专题

10.19907/j.0490-6756.2021.032002

基于评论特征提取和隐因子模型的评分预测推荐系统

引用
评分预测是推荐系统研究的核心问题,通过用户的历史行为来预测用户对商品的评分,根据评分高低来推荐用户喜欢的商品.当前基于评论评分预测推荐系统普遍只使用卷积神经网络捕获局部特征或者循环神经网络捕获全局特征,忽略了将这两类特征的有效融合.针对现存问题,本文提出基于评论特征提取和隐因子模型的评分预测推荐模型,使用自适应感受野的卷积神经网络(CNN)提取局部特征,同时使用门控循环单元(GRU)提取全局特征,将不同特征融合为评论的嵌入表达.再结合隐因子模型(LFM)对用户的特征偏好和商品的特征属性进行建模.最后,通过对用户和商品的嵌入表达进行评分预测.实验结果表明,本文模型在5个数据集上均高于现有基线模型.

评论、神经网络、特征提取、评分预测

58

TP391(计算技术、计算机技术)

国家科技重大专项;四川省重点研发项目

2021-06-09(万方平台首次上网日期,不代表论文的发表时间)

共8页

53-60

暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

58

2021,58(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn