期刊专题

10.19907/j.0490-6756.2021.032001

基于图像多尺度分解的前景提取

引用
为了弥补纹理对传统GrabCut提取结果的负面影响,本文分析了图像边缘和颜色分布的尺度特性,结合图像多尺度分解和GrabCut,提出了基于图像多尺度分解的前景提取模型.首先,该模型运用全变分对图像进行多尺度分解得到一系列平滑图像,该分解保护了图像边缘并平滑了纹理,压缩了图像区域颜色的分布范围;其次,将给定平滑图像前景颜色分布表示为高斯混合模型,并运用直方图形状分析方法优化了高斯混合模型的高斯函数个数,弥补了传统固定高斯函数个数的负面影响;最后,根据不同平滑图像的分割结果设计了迭代终止条件,使得从适当的分解尺度中提取前景.与传统前景提取算法相比较,该模型降低了纹理对前景提取的负面影响,其测评分数高于传统算法.

前景提取、多尺度分解、直方图形状分析、分解尺度

58

TP391(计算技术、计算机技术)

四川省科技支撑计划2016JZ0014

2021-06-09(万方平台首次上网日期,不代表论文的发表时间)

共8页

45-52

暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

58

2021,58(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn