10.19907/j.0490-6756.2021.032001
基于图像多尺度分解的前景提取
为了弥补纹理对传统GrabCut提取结果的负面影响,本文分析了图像边缘和颜色分布的尺度特性,结合图像多尺度分解和GrabCut,提出了基于图像多尺度分解的前景提取模型.首先,该模型运用全变分对图像进行多尺度分解得到一系列平滑图像,该分解保护了图像边缘并平滑了纹理,压缩了图像区域颜色的分布范围;其次,将给定平滑图像前景颜色分布表示为高斯混合模型,并运用直方图形状分析方法优化了高斯混合模型的高斯函数个数,弥补了传统固定高斯函数个数的负面影响;最后,根据不同平滑图像的分割结果设计了迭代终止条件,使得从适当的分解尺度中提取前景.与传统前景提取算法相比较,该模型降低了纹理对前景提取的负面影响,其测评分数高于传统算法.
前景提取、多尺度分解、直方图形状分析、分解尺度
58
TP391(计算技术、计算机技术)
四川省科技支撑计划2016JZ0014
2021-06-09(万方平台首次上网日期,不代表论文的发表时间)
共8页
45-52