期刊专题

103969/j.issn.0490-6756.2016.07.014

支持向量机的凸优化求解

引用
支持向量机(SVM)是一种基于统计学习理论的机器学习方法,由于其优越的学习性能,已经成为当前模式识别、数据挖掘、大数据处理等机器学习领域的研究热点.查阅相关同类文章,发现其中对SVM理论中公式,如距离函数d、拉格朗日函数L(w,b,α)、二次凸优化函数f(x)等的来龙去脉缺少细致的阐述.本文对SVM理论中典型的线性最优二分类问题的求解进行了完整的推导,并给出了对岩屑岩性分类识别的结果,也为今后的非线性多类模式分解作出铺垫.

支持向量机、模式识别、凸优化、线性分类

53

TP181(自动化基础理论)

国家自然科学基金青年科学基金11401405

2016-09-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

781-787

暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

53

2016,53(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn