期刊专题

10.3969/j.issn.0490-6756.2014.06.012

基于相似度的加权复杂网络社区发现方法

引用
针对加权复杂网络中的社区结构发现问题,本文定义基于权重关系的相似度,并在此基础上定义了节点中心度和归属度,改进GN算法的模块度评价函数,提出一种基于相似度的中心聚类算法(SCC).该算法通过计算节点间的相似度,选取合理的中心度大的节点作为社区中心节点,最后基于节点归属度来聚集从而形成社区;同时,提出了用相似度代替边介数的改进GN算法SGN.通过理论分析,并在数据集上进行实验验证,结果表明SCC算法与WGN算法、SGN算法相比,速度和精度上均有较大改善.同时与I2C算法相比,社区的划分有效性更好.

加权复杂网络、社区发现、相似度、SCC算法、SGN算法

51

TP393.01;TP301.6(计算技术、计算机技术)

国家“863”高技术发展计划项目2008AA01Z105

2015-02-05(万方平台首次上网日期,不代表论文的发表时间)

共7页

1170-1176

暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

51

2014,51(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn