期刊专题

前馈神经网络连续二元蚁群训练模型

引用
提出了一种用离散模型逼近连续模型进而求解连续域上的优化问题的蚁群优化算法Binary-ACO,并将Bi-nary-ACO与经典BP训练算法进行混合(LMBP和SDBP)应用于多层感知机的训练问题中,并在3个测试数据集上进行对比实验。实验结果证明单一蚁群优化算法作为一种通用的优化算法在前馈神经网络训练问题中的性能无法与经典的BP算法相比较,但是蚁群优化算法和BP经典训练算法结合的混合算法表现性能优良。两种混合算法(Bi-nary-ACO-sdbp和Binary ACO-lmbp)都获得了相当良好的解,特别是Binary ACO-lmbp这种算法不仅比单一的蚁群优化算法的性能上有相当的提高而且也优于经典的BP算法。

前馈神经网络、权值训练、连续域蚁群优化模型

10

TP183(自动化基础理论)

2012-04-21(万方平台首次上网日期,不代表论文的发表时间)

28-30

暂无封面信息
查看本期封面目录

软件导刊

1006-9062

42-1403/P

10

2011,10(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn