期刊专题

10.11715/rskxjs.R202005001

柴油机微粒捕集器流通性与微粒加载特性数值模拟

引用
使用AVL-Fire软件建立柴油机微粒捕集器(DPF)三维计算模型,模拟DPF内的压降损失、深层微粒沉积、滤饼层微粒沉积和总微粒沉积特性.研究不同的排气流量、排气温度、初始灰分、灰分分布和微粒分布对DPF流通性与微粒加载特性的影响.结果表明:在微粒加载过程中(考虑微粒再生的影响),DPF压降主要由壁面压降损失、微粒深层压降损失和微粒滤饼层压降损失组成,壁面压降损失呈现主要作用;当排气温度超过610 K时,壁面压降上升速率与深层压降上升速率之和大于滤饼层压降上升速率;升高排气温度和增加初始灰分,DPF压降损失增加;增加排气流量,深层微粒沉积速度和滤饼层微粒沉积速度加快,导致DPF压降损失增加;层状灰分对DPF压降损失升高作用大于堵塞段灰分;微粒在入口孔道表面呈抛物线分布(最小在DPF载体中间)时DPF压降最小;提高排气温度,有利于微粒与O2进行再生反应,但C与NO2反应速率没有明显变化;当排气温度升高到710 K时,深层微粒沉积量先上升后下降,滤饼层微粒沉积量先保持不变后缓慢上升.

柴油机、微粒捕集器、DPF压降、深层微粒沉积、滤饼层微粒沉积

27

TK421.5(内燃机)

国家重点研发计划2018YFB0105902

2021-06-22(万方平台首次上网日期,不代表论文的发表时间)

共10页

303-312

相关文献
评论
暂无封面信息
查看本期封面目录

燃烧科学与技术

1006-8740

12-1240/TK

27

2021,27(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn