期刊专题

10.3969/j.issn.1672-2620.2016.06.005

飞行试验数据驱动的涡扇发动机模型辨识

引用
为实现航空发动机飞行试验实时监控,分析整理了涡扇发动机实际飞行试验数据,并以三层前向人工神经网络为基础,通过引入输出层反馈至输入层,形成该涡扇发动机的NNARX模型。对包括高压转子转速在内的11个发动机关键参数变化模型进行研究,并在额外架次全程飞行试验数据上验证和讨论辨识模型的推广能力。结果表明,辨识模型样本点上最大相对误差在5%以内,辨识模型可以应用到该型发动机的试飞实时监控中,同时也可为后续建立涡扇发动机的全包线自适应实时监控模型提供参考。

航空发动机、飞行试验、人工神经网络、NARX模型辨识、全飞行包线、趋势监控、健康管理

29

V235.13(航空发动机(推进系统))

2017-02-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

21-25

相关文献
评论
暂无封面信息
查看本期封面目录

燃气涡轮试验与研究

1672-2620

51-1453/V

29

2016,29(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn