期刊专题

10.3969/j.issn.1672-2620.2015.06.007

涡轴发动机性能退化分析与诊断

引用
利用燃气涡轮发动机数值仿真软件(GSP)建立涡轴发动机性能仿真模型,采用退化因子方法得出部件性能退化后发动机测量参数的变化,并以此分析部件性能退化对发动机性能的影响.针对发动机单个部件性能对整机性能的影响权值难以定量的问题,提出采用随机赋权值的极限学习机(ELM)算法诊断发动机部件性能退化.仿真结果表明,运用ELM算法进行涡轴发动机部件性能退化诊断的平均精度可达97.5%,速度也明显快于BP等传统神经网络.

涡轴发动机、GSP建模、性能退化、极限学习机、退化因子、诊断

28

V235.12;V231.1+2(航空发动机(推进系统))

国家自然科学基金51505492;“泰山学者”建设工程专项经费资助

2016-03-24(万方平台首次上网日期,不代表论文的发表时间)

共5页

34-38

相关文献
评论
暂无封面信息
查看本期封面目录

燃气涡轮试验与研究

1672-2620

51-1453/V

28

2015,28(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn