10.3969/j.issn.1001-9235.2022.05.020
基于奇异谱分析的SPBO-ANFIS月径流组合预测模型
针对水文时间序列月径流多尺度非平稳性等特点,提出基于奇异谱分解(SSA)的学生心理学优化(SPBO)算法-自适应神经模糊推理系统(ANFIS)月径流组合预测模型,并应用于云南省某水文站月径流预报.首先通过SSA将实例月径流时序数据分解为若干独立子序列分量,以降低时序数据的复杂性;其次介绍SPBO算法原理,通过取8个标准函数对SPBO算法进行仿真验证及比较;最后采用SPBO算法优化ANFIS条件参数和结论参数,建立SSA-SPBO-ANFIS模型对每一个子序列进行预测,叠加后作为最终月径流预测结果,并与基于集合经验模态分解(EEMD)的EEMD-SPBO-ANFIS模型和未经分解的SPBO-ANFIS模型作比较.结果表明:SPBO算法具有较好的寻优精度;SSA-SPBO-ANFIS模型对实例月径流预测的平均绝对百分比误差5.57%,平均绝对误差0.20 m3/s,纳什系数0.9948,合格率96.7%,预测效果优于EEMD-SPBO-ANFIS模型,远优于SPBO-ANFIS模型.模型及方法可为相关水文时间序列预测研究提供参考.
径流预测、奇异谱分析、学生心理学优化算法、自适应神经模糊推理系统、仿真测试
43
P333(水文科学(水界物理学))
2022-06-17(万方平台首次上网日期,不代表论文的发表时间)
共9页
137-144,153